\rightarrow 3SeF₄ + 2Cl₂, the yield was 87%, a value comparable to that found for CIF reactions.

SeF₅Cl.—Selenium chloride pentafluoride was prepared by first forming the solid complex $CsSeF_{\delta}$ from CsF and SeF₄.⁸ Weighed samples of the complex were placed in prepassivated cylinders and $ClSO_{\delta}F$ was added at -196° . After warming to room temperature for several hours or more, the volatile products were separated by fractional condensation at -95, -112, and -196° . Unreacted $ClSO_{\delta}F$ was retained at -95° while byproducts and impurities such as ClF, $FClO_{\delta}$, and Cl₂ passed into the trap cooled to -196° . Pure SeF₆Cl was found in the -112° fraction. From 4.50 mmol of $CsSeF_{\delta}$, 4.13 mmol of SeF₆Cl was obtained, corresponding to a yield of 91.7% for the equation $CsSeF_{\delta} + ClSO_{\delta}F \rightarrow CsSO_{\delta}F + SeF_{\delta}Cl$. The presence of uncomplexed CsF in the salt does not inhibit the formation of SeF₆Cl directly but does result in the loss of some ClSO_{\delta}F by reaction to form ClF.[§]

Because the system CsF-SF4-ClF was very effective4 in producing SF5Cl, it was expected that CsF-SeF4-ClF would behave similarly. Such was not the case and unreacted ClF was always fully recoverable after 1 day or several weeks in contact with CsSeF₅. However, in the course of preparing SeF₄ from Se and CIF or CIF3, it was found that excesses of the chlorine fluorides gave detectable yields of SeF5Cl. To determine the extent of this reaction, 4.19 mmol of SeF4 and 4.21 mmol of CIF were placed in a 10-ml stainless steel cylinder and kept at ambient temperature for 8 days. Separation of the products by fractional condensation led to the recovery of unreacted SeF4 and CIF (1.45 mmol of each), as well as trace amounts of SeF_6 and Cl_2 The main product was SeF₅Cl (2.62 mmol), representing a 95% yield based on the SeF4 that had reacted. With ClF3, up to 10% yields of SeF5Cl were obtained but always accompanied by much greater amounts of SeF₆. Thus the direct reaction of SeF₄ and CIF affords an alternate, albeit less efficient, route to SeF5Cl.

Properties of SeF₃Cl.—Selenium chloride pentafluoride is colorless as a gas, liquid, or solid. It is stable at ambient temperature when stored in clean, dry, passivated stainless steel cylinders. However, contact with glass always resulted in significant decomposition. Even glassware suitably dry and otherwise prepared for the manipulation of ClF₈ did not serve for handling SeF₆Cl. It seems likely that this property hindered the earlier discovery of this compound.

Analysis.—A 0.2001-g sample of SeF_bCl was hydrolyzed with excess standardized NaOH solution in a glass ampoule fitted with a Teflon Fischer-Porter valve. Fluoride, selenium, and base consumption were determined as reported by Smith and Cady.⁹ Fluoride was also determined by the usual thorium nitrate titration. The amount of base consumed was calculated, assuming the hydrolysis equation SeF_bCl + 8OH⁻ \rightarrow SeO₄² - + 4H₂O + 5F⁻ + Cl⁻. Anal. Calcd for SeF_bCl: Se, 37.71; F, 45.37; OH⁻ consumed, 8.00 equiv/mol. Found: Se, 37.98; F, 45.18; OH⁻ consumed, 7.82 equiv/mol.

Molecular Weight.—The molecular weight of the compound as determined by vapor density, assuming ideal gas behavior, was 208 (calcd 209.5).

Vapor Pressure, Boiling Point, and Melting Point.—The vapor (sublimation) pressures of SeF₅Cl over the temperature range -79 to $+3^{\circ}$ are as follows $[T (^{\circ}C), P (mm)]$: -78.7, 6; $-64.4, 19; -45.3, 66; -32.2, 142; -23.0, 220; 0.0, 630; 3.5, 729. The pressure-temperature relationship is described by the equation log <math>P_{mm} = 7.779 - 1360/T^{\circ}K$. The normal boiling point calculated from the equation is 4.5° , with a heat of vaporization of 6.22 kcal/mol and a Trouton constant of 22.4. Under its own vapor, the compound melts at -19° . Since part of the pressure-temperature data given are below the melting point, it is actually a sublimation pressure and not a vapor pressure. However, pressure values obtained above and below the melting point were nearly on the same line, indicating little difference in the heats of sublimation and vaporization and consequently a very low heat of fusion.

Infrared Spectrum.—The infrared spectrum of SeF₅Cl in the range 4000-250 cm⁻¹ shows several absorptions with the most prominent ones occurring at 745 (vvs), 440 (vs), 420 (s), 385 (w), and 335 cm⁻¹ (m). The two highest frequencies and the strongest bands noted are comparable to those of bands of similar intensity and position in related hexacoordinate selenium

fluorides. Thus, the two strongest bands for SeF_{6}^{10} occur at 780 and 430 cm⁻¹ and for $\text{SeF}_{6}\text{OF}^{11}$ at 750 and 422 cm⁻¹. That these bands are typical of the SeF_{6} group is shown by their presence in a series of substituted SeF_{6} compounds.¹¹ A detailed analysis of the vibrational spectrum of SeF_{6}Cl is in progress.¹²

Nuclear Magnetic Resonance Spectrum.—The 19 F nmr spectrum of SeF₆Cl is shown in Figure 1. It is an AB₄ spectrum and

Figure 1.—The ¹⁹F nmr spectrum of SeF₅Cl.

resembles that of SF₆Cl¹³ so closely as to be virtually identical. The reported¹³ chemical shifts for SF₆Cl when converted to a CFCl₃ reference point are -62.3 and -125.8 ppm, respectively, for the axial and equatorial fluorines. For SeF₆Cl, the corresponding values taken from Figure 1 are -71.3 and -132.0 ppm. The only part of the spectrum of SeF₆Cl not identical with the SF₅Cl example is the appearance of the small satellite lines due to 77 Se⁻¹⁹F coupling. The observed coupling constant of 629 Hz is furthermore comparable to selenium-fluorine coupling in compounds which contain a chlorine bonded to the selenium central atom as in SeOFCl, where a value of 647 Hz was reported.¹⁴

Acknowledgment.—The authors gratefully acknowledge support for this work by the Office of Naval Research, Power Branch. We are also indebted to Drs. D. Pilipovich and K. O. Christe for helpful discussion.

(10) J. Gaunt, Trans. Faraday Soc., 49, 1122 (1953).

(11) J. E. Smith and G. H. Cady, Inorg. Chem., 9, 1442 (1970).

(12) K. O. Christe, C. J. Schack, and E. C. Curtis, to be submitted for publication.

(13) C. I. Merrill, S. M. Williamson, G. H. Cady, and D. F. Eggers, *ibid.*, **1**, 215 (1962).

(14) T. Birchall, R. J. Gillespie, and S. L. Vekris, Can. J. Chem., 43, 1672 (1965).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE 37203

A New Cyclotriphosphazene from a Ring-Closure Reaction

By MANFRED BERMANN AND JOHN R. VAN WAZER*

Received June 4, 1971

Considerable work has been done on exchange reactions involving tris(dimethylamino)phosphine with

⁽⁸⁾ E. E. Aynsley, R. D. Peacock, and P. L. Robinson, J. Chem. Soc., 1231 (1952).

⁽⁹⁾ J. E. Smith and G. H. Cady, Inorg. Chem., 9, 1293 (1970).

various primary¹ and secondary^{2,3} amines ("transamination"), amides,^{2,3} imines,⁴ amino alcohols,⁵ and carbonyl compounds.3 Iminobis(aminodiphenylphosphonium) chloride,6 $[(C_6H_5)_2P(NH_2) \cdots N \cdots P(NH_2)]$ $(C_6H_5)_2$]+Cl⁻ (I), and the corresponding free phosphinimine (II) offer a preformed five-membered chain for a ring-closure reaction as well as amino groups, and therefore we have investigated the reaction between $P[N(CH_3)_2]_3$ and II.

Experimental Section

Materials .-- All solvents used were Spectrograde quality and practically water free. Compound I was made by ammonolysis of $(C_6H_5)_2PCl_3$ with dry ammonia⁶ followed by dehydrochlorination to the corresponding phosphinimine (II) with a freshly prepared sodium methoxide solution.7 Melting point and nmr spectra agreed with the published data. P[N(CH₃)₂]₃ was also prepared following a literature procedure.8 All operations were carried out under nitrogen.

Analyses .- Elemental analyses were carried out by Chemalytics, Inc., Tempe, Ariz. Melting points were obtained in sealed glass capillaries on a Mel-Temp melting point block and are uncorrected.

Spectra.—Infrared (ir) spectra were recorded in solution (CCl_4-CS_2) with a Beckman IR-10 spectrometer. The ¹H nuclear magnetic resonance (nmr) spectra were obtained with a Varian A-60 spectrometer in CDCl₈ solution, using TMS as an internal standard. The ³¹P nmr spectra were run with a Varian XL-100-15 spectrometer, operating at a frequency of 40.55 MHz and locked onto the deuterium resonance of D_2O . The samples were contained in 5-mm o.d. tubes (solvent CH₂Cl₂) which were concentrically inserted, using Teflon spacers, into a thin-wall 12mm o.d. tube containing the D₂O.

Reaction of II with $P[N(CH_3)_2]_3$.—In a typical reaction, 10.0 g of II and 3.92 g of P[N(CH₃)₂]₃ in 40 ml of bromobenzene were heated slowly to reflux. The reaction started at ca. 120° and the split-off dimethylamine was collected in a -78° trap. After 4 hr, 2.17 g of (CH₃)₂NH (96% of theory) was collected; the yellow solution was concentrated to about 20 ml and chilled to 0° , and the unreacted II was filtered off. Evaporation to dryness yielded a heavy oil (III); addition of acetonitrile gave, upon standing, white crystals which were recrystallized from acetonitrile; yield 8.05 g (61% of theory based upon the quantity of II consumed); dec pt ca. 110°. Anal. Calcd for $C_{28}H_{30}N_5P_8$: C, 63.51; H, 5.71; N, 13.23; P, 17.55. Found: C, 63.07; H, 5.53; N, 13.29; P, 17.70. Nmr: proton spectrum: τ_{C6H_8} 2.08, 2.30, 2.62 (complex multiplet); $\tau_{\rm PH}$ 2.45 (d); $\tau_{\rm CH_3}$ 7.48 (d); $\tau_{\rm CH_3CN}$ 8.22; ${}^{3}J_{\rm PNCH}$ = 13.5 Hz, ${}^{1}J_{\rm PH}$ = 611 Hz; phosphorus spectrum: $\delta_{P_{\rm CCH_5}}$ -14.1 ppm (s); $\delta_{P_{\rm N(CH_5)_2}}$ -7.5 (d, d); ratio $P_{C_6H_5}$: $P_{N(CH_8)_2} = 2:1$ (calcd 2:1).

The above compound represents an acetonitrile adduct of $(C_{\theta}H_{\delta})_{4}P_{3}N_{\theta}H[N(CH_{\theta})_{2}]$. This adduct may be destroyed by recrystallization from benzene to give the unsolvated compound; mp 179–181°. Anal. Calcd for $C_{28}H_{27}N_4P_8$: C, 63.93; H, 5.57; N, 11.47; P, 19.02. Found: C, 63.42, H, 5.04; N, 11.56; P, 19.28. Ir: 3080 (s, sh), 3060 (vs), 3020 (m), 2940– 2920 (s), 2890 (m), 2840 (m), 2800 (m), 2370/2340 (s), 1480 (m), 1440 (s), 1200-1160 (vs), 1120 (vs), 1070 (s), 1030 (s), 970 (vs), 855 (s), 715 (s), 690 (vs), 605 cm⁻¹ (m). Nmr: as above but without the acetonitrile peak.

(2) J. Devillers, M. Willson, and R. Burgada, Bull. Soc. Chim. Fr., 4670 (1968).

(3) R. Burgada, Collog. Int. Cent. Nat. Rech. Sci., No. 182, 247 (1969), and references therein; Bull. Soc. Chim. Fr., 136 (1971).

(4) Y. Charbonnel, R. Burgada, and J. Barrans, C. R. Acad. Sci., Ser. C, 266, 1241 (1968).

(5) R. Burgada, M. Bon, and F. Mathis, *ibid.*, Ser. C, 265, 1499 (1967).

(6) I. I. Bezman and J. H. Smalley, Chem. Ind. (London), 839 (1960); U. S. Patent 3,080,422 (1963) (to Armstrong Cork Co.); Chem. Abstr., 59, 8790 (1963); I. I. Bezman, U. S. Patent 3,098,871 (1963) (to Armstrong Cork Co.); Chem. Abstr., 59, 14024 (1963); R. G. Rice and B. Grushkin, U. S Patent 3,329,716 (1967) (to W. R. Grace & Co.); German Patent 1,222,500 (1966); British Patent 1,016,467 (1966); Chem. Abstr., 64, 17639 (1966).

(7) A. Schmidpeter and J. Ebeling, Angew. Chem., 79, 534 (1967); Angew. Chem., Int. Ed. Engl., 6, 565 (1967); Chem. Ber., 101, 2602 (1968). (8) K. Sasse in "Houben-Weyl, Methoden der Organischen Chemie,"

Vol. XII/2, Georg Thieme Verlag, Stuttgart, 1964, p 108.

Results and Discussion

As in the case of the reaction of $RP(OC_6H_5)_2$ with II,⁹ the isolated product is not the phospha(III)diphospha(V)triazine derivative IV but its tautomer V, a PH phosphazene. Evidence for the ring closure is given by the infrared spectrum which shows at 1200--

1160 and at 1120 cm⁻¹ the characteristic P=Nbands. Evidence for V is provided by the insensitivity of the compound to oxygen, by the ir frequencies at 2370 and 2340 cm⁻¹ ($\nu_{\rm PH}$ vibrations), and by the high coupling constant $J_{PH} = 611$ Hz. The observed ³¹P chemical shifts are also in accord with this structure.

It should be noted that in one experiment out of nine carried out, the ³¹P nmr spectrum of a CH₂Cl₂ solution of III was found to exhibit only two peaks of δ_P -63.0 ppm and δ_P -40.9 ppm (ratio: calcd, 1:2; found, 1:2.1), the former being split into a multiplet (theoretical septet) with ${}^{3}J_{PNCH} = 14.0$ Hz. This experiment could, however, not be repeated, but it seems we have here observed form IV as the sole product which then transformed into V upon crystallization.

It is further interesting to note that V gives an adduct with acetonitrile as do the related phosphazatriene derivatives $(C_6H_5)_4P_3N_3Cl_2^{10}$ and $[(C_6H_5)_2PN]_3^{11}$ (the latter with $sym-C_2H_2Cl_4$); no such adduct was reported for the previously mentioned⁹ PH phosphazenes.

Acknowledgment.—We wish to thank the National Science Foundation (Grant No. GP-9525) for partial financial support and Dr. A. D. F. Toy of the Stauffer Chemical Co. for a generous gift of diphenylphosphinous chloride.

(9) A. Schmidpeter and J. Ebeling, Angew. Chem., 80, 197 (1968); Angew. Chem., Int. Ed. Engl., 7, 209 (1968).

(10) C. D. Schmulbach and C. Derderian, J. Inorg. Nucl. Chem., 25, 1395 (1963); R. D. Whitaker and W. C. Guida, ibid., 31, 875 (1969).

(11) H. H. Sisler, H. S. Ahuja, and N. L. Smith, Inorg. Chem., 1, 84 (1962); R. D. Whitaker, A. J. Barreiro, P. A. Furman, W. C. Guida, and E. S. Stallings, J. Inorg. Nucl. Chem., 30, 2921 (1968).

CONTRIBUTION FROM THE DEPARTMENTS OF CHEMISTRY, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112, AND UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48105

The Synthesis of Tetrafluorodiphosphine-Bis(borane(3))

By R. T. PAINE¹⁸ AND R. W. PARRY^{*15}

Received June 30, 1971

In an earlier communication² from this laboratory

(1) (a) University of Michigan. (b) University of Utah.

(2) K. W. Morse and R. W. Parry, J. Amer. Chem. Soc., 89, 172 (1967).

⁽¹⁾ G. Pfeiffer, A. Guillemonat, and J. C. Traynard, C. R. Acad. Sci., Ser. C, 266, 400 (1968).